

Date: 08-11-2024

Dept. No.

Max. : 100 Marks

Time: 09:00 am-12:00 pm

SECTION A

Answer ANY FOUR of the following

(4 x 10 = 40)

1. Prove that for any vector \vec{A} , $\nabla \times (\nabla \times \vec{A}) = \nabla(\nabla \cdot \vec{A}) - \nabla^2 \vec{A}$.
2. Find the directional derivative of $xy + yz + zx$ at the point $(1, 1, 3)$ in the direction of the vector $\vec{i} + 2\vec{j} + 2\vec{k}$.
3. Verify Stokes' theorem for $\vec{A} = (2x - y)\vec{i} - yz^2\vec{j} - y^2z\vec{k}$ taken over the upper half of the surface of the sphere $x^2 + y^2 + z^2 = 1, z \geq 0$ and the boundary curve C , the circle $x^2 + y^2 = 1, z = 0$.
4. Find the value of the integral $\int_C \vec{A} \cdot d\vec{r}$, where $\vec{A} = yz\vec{i} + zx\vec{j} - xy\vec{k}$ if C is the curve whose parametric equations are $x = t, y = t^2, z = t^3$ drawn from $O(0,0,0)$ to $Q(2, 4, 8)$.
5. Solve the homogenous differential equation: $x \frac{dy}{dx} - y = \sqrt{x^2 + y^2} dx$.
6. Solve $\frac{dy}{dx} = \frac{x+2}{2x+y-3}$.
7. Find the general solution of the differential equation $(D^2 + 2D + 5)y = x e^x$.
8. Select suitable method and solve the differential equation $3x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = x$.

SECTION B

Answer ANY THREE of the following

(3 x 20 = 60)

9. (a) If $\nabla \varphi = (y + y^2 + z^2)\vec{i} + (x + z + 2xy)\vec{j} + (y + 2zx)\vec{k}$ and if $\varphi(1, 1, 1) = 3$, find φ .
(b) Evaluate $\iiint_V \nabla \cdot \vec{F} dV$ if $\vec{F} = x^2\vec{i} + y^2\vec{j} + z^2\vec{k}$ and if V is the volume of the region enclosed by the cube $0 \leq x, y, z \leq 1$.
10. Verify the divergence theorem for $\vec{A} = (x + y)\vec{i} + x\vec{j} + z\vec{k}$ taken over the region V of the cube bounded by the planes $x = 0, x = 1, y = 0, y = 1, z = 0, z = 1$.
11. Using Green's theorem, show that $\int_C (3x^2 - 8y^2) dx + (4y - 6xy) dy = 20\ell$, where C is the boundary of the rectangular area enclosed by the lines $x = 0, x = 1, y = 0, y = 2$ in the xoy plane.
12. (a) Solve: $(1 - x^2) \frac{dy}{dx} + 2xy = x\sqrt{1 - x^2}$, given that $y = 0$ when $x = 0$.
(b) Find the solution of $\frac{dy}{dx} - y \tan x = \frac{\sin x \cos^2 x}{y^2}$.

13. Solve: $(D^2 + 16)y = 2e^{-3x} + \cos 4x$.

14. Using variation of parameters, solve $\frac{d^2y}{dx^2} + y = \sec x$.

\$\$\$\$\$\$\$\$\$\$\$\$